Assessment of Motor Imagination

Keywords

neurological rehabilitation
motor imagery
neurocognitive assessment
neuroplasticity
assessment tools

How to Cite

1.
Aranda Velez MR, Russo H. Assessment of Motor Imagination. International Journal of Neurology [Internet]. 2024 Dec. 30 [cited 2026 Jan. 26];58:92. Available from: https://ijneurology.org/index.php/ijn/article/view/92

Abstract

Neurological rehabilitation was considered a fundamental area of health sciences, aimed at the recovery and optimization of altered functions of the central nervous system. Within this field, neurocognitive rehabilitation gained relevance by integrating knowledge from various disciplines, based on the principle of neuroplasticity as the basis for functional brain reorganization. In this context, Motor Imagery became established as a technique of clinical and scientific interest, defined as the ability to mentally represent a movement without physically executing it, activating neural networks similar to those involved in the actual action. The objective of this study was to describe the assessment tools used in Motor Imagery. To this end, a narrative review of the literature was conducted, focusing mainly on the PubMed database, supplemented by bibliography provided by the professor, the tutor, and specialized journals in the field of neurology. The search was conducted between May and July 2020, using specific combinations of keywords, and previously defined inclusion and exclusion criteria were applied. The final sample consisted of thirteen review articles. The results allowed us to identify instruments with adequate reliability and validity for assessing motor imagination, among which the KVIQ, VMIQ, VMIQ-2, MIQ-RS, TAMI, and TDMI stood out. These instruments presented methodological differences, but they coincided in assessing motor representation processes at the cortical level, corresponding to the first neuron. It was concluded that, although specific and useful assessment tools exist, methodological diversity opens up the possibility for future research aimed at developing and refining new assessment instruments in this field.

References

1. Marrón EM. Estimulación cognitiva y rehabilitación neuropsicológica. Madrid: Editorial Médica Panamericana; 2009.

2. Russo H. Actualización en ciencias de la rehabilitación. En: Jornadas Interuniversitarias de Actualización en Ciencias de la Rehabilitación; Ciudad Autónoma de Buenos Aires, Argentina; 2020.

3. Van der Lee JH, Beckerman H, Lankhorst GJ, Bouter LM. The responsiveness of the Action Research Arm Test and the Fugl-Meyer Assessment Scale in chronic stroke patients. Stroke. 2001;32(2):110–113.

4. Page SJ, Fulk GD, Boyne P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys Ther. 2012;92(6):791–798.

5. Doussoulin A, Saiz JL, Blanton S. Propiedades psicométricas de una versión en castellano de la escala Motor Activity Log-30 en pacientes con extremidad superior parética por accidente cerebrovascular. Rev Chil Neuropsiquiatr. 2013;51(3):201–210.

6. Doussoulin SA, Rivas SR, Campos SV. Validación del Action Research Arm Test (ARAT) en pacientes chilenos con extremidad superior parética post accidente cerebrovascular. Rev Med Chil. 2012;140(1):59–65.

7. Guevara CR, Lugo LH. Validez y confiabilidad de la escala de Tinetti para población colombiana. Rev Colomb Reumatol. 2012;19(4):218–233.

8. Moukarzel M, Di Rienzo F, Lahoud JC, Hoyek F, Collet C, Guillot A, et al. The therapeutic role of motor imagery during the acute phase after total knee arthroplasty: a pilot study. Disabil Rehabil. 2019;41(8):926–933.

9. Golomer E, Bouillette A, Mertz C, Keller J. Effects of mental imagery styles on shoulder and hip rotations during preparation of pirouettes. J Mot Behav. 2008;40(4):281–290.

10. Roberts R, Callow N, Hardy L, Markland D, Bringer J. Movement imagery ability: development and assessment of a revised version of the Vividness of Movement Imagery Questionnaire. J Sport Exerc Psychol. 2008;30(2):200–221.

11. Malouin F, Richards CL, Jackson PL, Lafleur MF, Durand A, Doyon J. Kinesthetic and visual imagery questionnaire (KVIQ): administration procedures and scoring. Phys Ther. 2007;87(2):182–191.

12. Malouin F, Richards CL, Durand A, Descent M, Poiré D, Frémont P, et al. Effects of practice, visual loss, limb amputation, and disuse on motor imagery vividness. Neurorehabil Neural Repair. 2009;23(5):449–463.

13. Madan CR, Singhal A. Introducing TAMI: an objective test of ability in movement imagery. J Mot Behav. 2013;45(2):153–166.

14. Loison B, Moussaddaq AS, Cormier J, Richard I, Ferrapie AL, Ramond A, et al. Translation and validation of the French Movement Imagery Questionnaire–Revised Second Version (MIQ-RS). Ann Phys Rehabil Med. 2013;56(3):157–173.

15. Del Castillo MD, Serrano JI, Lerma S, Martínez I, Rocon E. Evaluación neurofisiológica del entrenamiento de la imaginación motora con realidad virtual en pacientes pediátricos con parálisis cerebral. Rev Iberoam Autom Inform Ind. 2018;15(2):174–181.

16. Jackson PL, Lafleur MF, Malouin F, Richards CL, Doyon J. Potential role of mental practice using motor imagery in neurologic rehabilitation. Arch Phys Med Rehabil. 2001;82(8):1133–1141.

17. Di Rienzo F, Debarnot U, Daligault S, Saruco E, Delpuech C, Doyon J, et al. Online and offline performance gains following motor imagery practice: a comprehensive review of behavioral and neuroimaging studies. Front Hum Neurosci. 2016;10:315.

18. Guillot A, Collet C. Construction of the motor imagery integrative model in sport: a review and theoretical investigation of motor imagery use. Int Rev Sport Exerc Psychol. 2008;1(1):31–44.

19. Ruffino C, Papaxanthis C, Lebon F. Neural plasticity during motor learning with motor imagery practice: review and perspectives. Neuroscience. 2017;341:61–78.

20. Cano-de-la-Cuerda R, Collado-Vázquez S. Neurorrehabilitación. 1a ed. Madrid: Editorial Médica Panamericana; 2012.

21. Aguilar Mendoza LA, Espinoza Pardo G, Oruro Puma E, Carrión D. Aprendizaje, memoria y neuroplasticidad. Temática Psicológica. 2010;6(6):7–14.

22. Falco M, Kuz A, Falco M. Comprendiendo el aprendizaje a través de las neurociencias con el entrelazado de las TIC en educación. Rev Iberoam Tecnol Educ Educ Tecnol. 2016;(17):43–51.

23. Cid FM. Introducción a las neuroimágenes y el cerebro. Exemplum. 2010;3:267–274.

24. de Carvalho Machado SE, Portella CE, Silva JG, Velasques B, Bastos VH, Marques da Cunha M, et al. Aprendizaje y memoria implícita: mecanismos y neuroplasticidad. Rev Neurol. 2008;46(9):543–549.

25. Cano-de-la-Cuerda R, Molero-Sánchez A, Carratalá-Tejada M, Alguacil-Diego IM, Molina-Rueda F, Miangolarra-Page JC, et al. Teorías y modelos de control y aprendizaje motor: aplicaciones clínicas en neurorrehabilitación. Neurologia. 2015;30(1):32–41.

26. Correa Sanz M. Neuroanatomía funcional de los aprendizajes implícitos: asociativos, motores y de hábito. Rev Neurol. 2007;44(4):234–241.

27. Doyon J, Benali H. Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol. 2005;15(2):161–167.

28. Anokhin PK. La teoría del sistema funcional y el enfoque cibernético en biología y medicina. Rassegna Sovietica. 1973;1973:1–15.

29. Alexandrov YI. Aprendizaje y memoria: una perspectiva sistémica. Rev Psicol Gen Aplic. 2004;57:3–51.

30. Haines DE. Principios de neurociencia: aplicaciones básicas y clínicas. Barcelona: Elsevier España; 2013.

31. Svoboda K, Li N. Neural mechanisms of movement planning: motor cortex and beyond. Curr Opin Neurobiol. 2018;49:33–41.

32. Li N, Chen TW, Guo ZV, Gerfen CR, Svoboda K. A motor cortex circuit for motor planning and movement. Nature. 2015;519(7541):51–56.

33. Nakano H, Kodama T, Ukai K, Kawahara S, et al. Reliability and validity of the Japanese version of the Kinesthetic and Visual Imagery Questionnaire. Brain Sci. 2018;8(4):1–12.

34. Ángeles González M, Dopico J, Campos A. Diferencias en imagen mental del movimiento entre deportistas expertos y no expertos. Rev Psicol Deporte. 2006;6(2):1–12.

35. Jiang D, Edwards MG, Mullins P, Callow N. The neural substrates for the different modalities of movement imagery. Brain Cogn. 2015;97:22–31.

36. Ziv G, Lidor R, Arnon M, Zeev A. The vividness of movement imagery questionnaire (VMIQ-2): translation and reliability of a Hebrew version. Isr J Psychiatry. 2017;54(2):48–53.

37. Butler AJ, Cazeaux J, Fidler A, Jansen J, Lefkove N, Gregg M, et al. The Movement Imagery Questionnaire–Revised, Second Edition (MIQ-RS) is a reliable and valid tool for evaluating motor imagery in stroke populations. Evid Based Complement Alternat Med. 2012;2012:1–8.

38. Malouin F, Richards CL, Durand A, Doyon J. Reliability of mental chronometry for assessing motor imagery ability after stroke. Arch Phys Med Rehabil. 2008;89(2):311–319.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Matías Ricardo Aranda Velez, Horacio Russo (Author)