Abstract
Introduction: Neuropsychological and neurocognitive rehabilitation was presented as an evolving field aimed at improving functioning and quality of life in people with central nervous system disorders. Within this framework, cognitive stimulation was defined as a set of interventions aimed at enhancing processes such as attention, memory, language, and executive functions, and a transition was observed from restoration-centered approaches to compensatory strategies and a comprehensive view of the rehabilitation process. Development: Two predominant approaches in rehabilitation were described: the restoration of impaired functions and compensation through alternative strategies or external aids. Neurocognitive techniques were highlighted for their direct functional intervention on central mechanisms linked to the mental representation of movement, based on learning and neuroplasticity. In this context, motor imagery was characterized as the ability to mentally execute actions without muscle involvement, and its repetitive practice was associated with benefits in motor learning, performance, motivation, and functional recovery. Evidence supporting adaptive changes at the cortical, corticospinal, and spinal levels, along with reorganization of neural networks, was reviewed. In addition, the need for valid and reliable instruments to assess motor imagery was identified, considering the diversity of tests available depending on the focus on the first or second neuron. Conclusions: The study concluded that motor imagery was a therapeutic tool with significant potential in neurorehabilitation, whose clinical use required adequate evaluation and understanding of its neuroplastic foundations. It was considered that the systematic analysis of instruments and theoretical models favored more precise interventions and opened lines for future research.
References
1. Page SJ, Fulk GD, Boyne P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys Ther. 2012;92(6):791–798.
2. Doussoulin A, Saiz JL, Blanton S. Propiedades psicométricas de una versión en castellano de la escala Motor Activity Log-30 en pacientes con extremidad superior parética por accidente cerebrovascular. Rev Chil Neuropsiquiatr. 2013;51(3):201–210.
3. Doussoulin SA, Rivas SR, Campos SV. Validación del Action Research Arm Test (ARAT) en pacientes chilenos con extremidad superior parética post accidente cerebrovascular. Rev Med Chil. 2012;140(1):59–65.
4. Guevara CR, Lugo LH. Validez y confiabilidad de la escala de Tinetti para población colombiana. Rev Colomb Reumatol. 2012;19(4):218–233.
5. Malouin F, Richards CL, Jackson PL, Lafleur MF, Durand A, Doyon J. Kinesthetic and visual imagery questionnaire (KVIQ): administration procedures and scoring. Phys Ther. 2007;87(2):182–191.
6. Malouin F, Richards CL, Durand A, Descent M, Poiré D, Frémont P, et al. Effects of practice, visual loss, limb amputation, and disuse on motor imagery vividness. Neurorehabil Neural Repair. 2009;23(5):449–463.
7. Madan CR, Singhal A. Introducing TAMI: an objective test of ability in movement imagery. J Mot Behav. 2013;45(2):153–166.
8. Loison B, Moussaddaq AS, Cormier J, Richard I, Ferrapie AL, Ramond A, et al. Translation and validation of the French Movement Imagery Questionnaire–Revised Second Version (MIQ-RS). Ann Phys Rehabil Med. 2013;56(3):157–173.
9. Guillot A, Collet C. Construction of the motor imagery integrative model in sport: a review and theoretical investigation of motor imagery use. Int Rev Sport Exerc Psychol. 2008;1(1):31–44.
10. Ruffino C, Papaxanthis C, Lebon F. Neural plasticity during motor learning with motor imagery practice: review and perspectives. Neuroscience. 2017;341:61–78.
11. Cano-de-la-Cuerda R, Collado-Vázquez S. Neurorrehabilitación. 1a ed. Madrid: Editorial Médica Panamericana; 2012.
12. Aguilar Mendoza LA, Espinoza Pardo G, Oruro Puma E, Carrión D. Aprendizaje, memoria y neuroplasticidad. Temática Psicológica. 2010;6(6):7–14.
13. Falco M, Kuz A, Falco M. Comprendiendo el aprendizaje a través de las neurociencias con el entrelazado de las TIC en educación. Rev Iberoam Tecnol Educ Educ Tecnol. 2016;(17):43–51.
14. Cid FM. Introducción a las neuroimágenes y el cerebro. Exemplum. 2010;3:267–274.
15. de Carvalho Machado SE, Portella CE, Silva JG, Velasques B, Bastos VH, Marques da Cunha M, et al. Aprendizaje y memoria implícita: mecanismos y neuroplasticidad. Rev Neurol. 2008;46(9):543–549.
16. Cano-de-la-Cuerda R, Molero-Sánchez A, Carratalá-Tejada M, Alguacil-Diego IM, Molina-Rueda F, Miangolarra-Page JC, et al. Teorías y modelos de control y aprendizaje motor: aplicaciones clínicas en neurorrehabilitación. Neurologia. 2015;30(1):32–41.
17. Correa Sanz M. Neuroanatomía funcional de los aprendizajes implícitos: asociativos, motores y de hábito. Rev Neurol. 2007;44(4):234–241.
18. Doyon J, Benali H. Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol. 2005;15(2):161–167.
19. Li N, Chen TW, Guo ZV, Gerfen CR, Svoboda K. A motor cortex circuit for motor planning and movement. Nature. 2015;519(7541):51–56.
20. Nakano H, Kodama T, Ukai K, Kawahara S, et al. Reliability and validity of the Japanese version of the Kinesthetic and Visual Imagery Questionnaire. Brain Sci. 2018;8(4):1–12.
21. Ángeles González M, Dopico J, Campos A. Diferencias en imagen mental del movimiento entre deportistas expertos y no expertos. Rev Psicol Deporte. 2006;6(2):1–12.
22. Jiang D, Edwards MG, Mullins P, Callow N. The neural substrates for the different modalities of movement imagery. Brain Cogn. 2015;97:22–31.
23. Ziv G, Lidor R, Arnon M, Zeev A. The vividness of movement imagery questionnaire (VMIQ-2): translation and reliability of a Hebrew version. Isr J Psychiatry. 2017;54(2):48–53.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Matías Ricardo Aranda Velez, Horacio Russo (Author)