Stroke and spasticity: a comprehensive approach from the acute phase to rehabilitation

Keywords

Stroke
spasticity
neurological rehabilitation
physiotherapy
neuroplasticity

How to Cite

1.
Musuruana A, Ricardo Revelant M. Stroke and spasticity: a comprehensive approach from the acute phase to rehabilitation. International Journal of Neurology [Internet]. 2024 Dec. 30 [cited 2026 Jan. 26];58:137. Available from: https://ijneurology.org/index.php/ijn/article/view/137

Abstract

The study comprehensively addressed cerebrovascular disease and spasticity as one of its main neurological sequelae, highlighting its impact on the functionality and quality of life of those affected. Stroke was described as one of the leading causes of morbidity, mortality, and disability worldwide, with acute clinical manifestations requiring early diagnosis and management to optimise prognosis. The different types of stroke, both ischaemic and haemorrhagic, were reviewed, along with their pathophysiological mechanisms, risk factors, clinical manifestations and progression, emphasising the importance of acute care and secondary prevention. Spasticity is a common complication following stroke, associated with upper motor neuron lesions and maladaptive neuroplastic changes. Its pathophysiological mechanisms, clinical characteristics, classification, and relationship to pain, movement limitation, and functional disability were discussed. The paper highlighted the importance of early recognition of spasticity and identification of predictive factors for its appropriate management. The fundamental role of early and continuous neurological rehabilitation was emphasised, noting that it contributed significantly to reducing complications, improving functional autonomy and promoting the patient's social reintegration. Various therapeutic strategies were described, including physiotherapy, motor re-education, electrotherapy, neurophysiological methods and pharmacological and surgical management of spasticity. Finally, it was concluded that a multidisciplinary, individualised and evidence-based approach was essential to optimise functional recovery and quality of life after stroke.

References

1. Kliegman R, St Geme J, Blum N, Shah S, Tasker R. Nelson. Tratado de pediatría. Capítulo 730. 21ª ed. Barcelona: Elsevier; 2020. p. 3760-3762. Disponible en: https://www.clinicalkey.com/student/content/book/3-s2.0-B9788491136842007305

2. Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci. 2020;21(20):7609. Disponible en: https://doi.org/10.3390/ijms21207609

3. Lacuague J, et al. Rehabilitación post ACV en los servicios de salud. Montevideo: Ministerio de Salud Pública; 2023. Disponible en: https://www.gub.uy/ministerio-salud-publica/sites/ministerio-salud-publica/files/documentos/publicaciones/

4. Llópez Lorangarriu L. Efecto de la vibración como tratamiento de la extremidad superior espástica en pacientes post-ictus subagudos combinada con actividades instrumentales de la vida diaria [tesis]. Barcelona: Institut Guttmann; 2019. Disponible en: https://siidon.guttmann.com/files/11.-_tfm_laura_llopez.pdf

5. Martín García MM. Revisión bibliográfica sobre cuidados enfermeros a pacientes hospitalizados con accidente cerebrovascular. Rev Enferm Cuidándote. 2022;5(3):2–12. Disponible en: https://doi.org/10.51326/ec.5.3.7459705

6. Micheli F, Fernández Pradal M. Neurología. Rev Médica Panamericana. 2019;4:26-27.

7. Mihailoff G, Haines D. Principios de neurociencia. Capítulo 25. Barcelona: Elsevier; 2019. p. 360-376. Disponible en: https://www.clinicalkey.com/student/content/book/3-s2.0-B9788491133421000257

8. Quiñones Aguilar S, Paz C, Delgado C, Jiménez Gil FJ. Espasticidad en adultos. J Imbiomed. 2019;10:112-121. Disponible en: https://www.imbiomed.com.mx/articulo.php?id=56928

9. Raidel L, Ordaz A, Peña Á, Ramos YP. Enfermedad cerebrovascular en pacientes ingresados en cuidados intensivos. Rev Cienc Méd Pinar Río. 2020;24(4):4-5. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-31942020000400004

10. Ropper AH, Samuels MA, Klein JP, Prasad S. Enfermedades cerebrovasculares. En: Adams y Victor. Principios de Neurología. 12ª ed. New York: McGraw-Hill; 2023. Disponible en: https://accessmedicina.mhmedical.com/content.aspx?bookid=3353&sectionid=282317444

11. Sabio R, et al. Approach to cerebrovascular disease: from primary prevention to rehabilitation. Rev Argent Med. 2023. Disponible en: http://www.revistasam.com.ar/index.php/RAM/article/view/844/779

12. Sáinz Pelayo MP, et al. Espasticidad en la patología neurológica. Actualización sobre mecanismos fisiopatológicos, avances en el diagnóstico y tratamiento. Rev Neurol. 2020. Disponible en: https://neurologia.com/articulo/2019474

13. Smith WS, Johnston SC, Hemphill JC III. Introducción a las enfermedades cerebrovasculares. En: Loscalzo J, Fauci A, Kasper D, Hauser S, Longo D, Jameson J, editores. Harrison. Principios de Medicina Interna. 21ª ed. New York: McGraw-Hill; 2022. Disponible en: https://accessmedicina.mhmedical.com/content.aspx?bookid=3118&sectionid=26882130.

14. Bai Z, Fong KNK, Zhang JJ, Chan J, Ting KH. Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: A systematic review and meta-analysis. Journal of NeuroEngineering and Rehabilitation 2020;17. https://doi.org/10.1186/s12984-020-00686-2.

15. Bavikatte G, Subramanian G, Ashford S, Allison R, Hicklin D. Early Identification, Intervention and Management of Post-stroke Spasticity: Expert Consensus Recommendations. Journal of Central Nervous System Disease 2021;13. https://doi.org/10.1177/11795735211036576.

16. Birch S, Robinson N. Acupuncture as a post-stroke treatment option: A narrative review of clinical guideline recommendations. Phytomedicine 2022;104. https://doi.org/10.1016/j.phymed.2022.154297.

17. Bobos P, Nazari G, Lu Z, MacDermid JC. Measurement Properties of the Hand Grip Strength Assessment: A Systematic Review With Meta-analysis. Archives of Physical Medicine and Rehabilitation 2020;101:553–65. https://doi.org/10.1016/j.apmr.2019.10.183.

18. Chang JL, Coggins AN, Saul M, Paget-Blanc A, Straka M, Wright J, et al. Transcutaneous Auricular Vagus Nerve Stimulation (tAVNS) Delivered During Upper Limb Interactive Robotic Training Demonstrates Novel Antagonist Control for Reaching Movements Following Stroke. Frontiers in Neuroscience 2021;15. https://doi.org/10.3389/fnins.2021.767302.

19. Chen J, Or CK, Chen T. Effectiveness of Using Virtual Reality–Supported Exercise Therapy for Upper Extremity Motor Rehabilitation in Patients with Stroke: Systematic Review and Meta-analysis of Randomized Controlled Trials. Journal of Medical Internet Research 2022;24. https://doi.org/10.2196/24111.

20. Chen Y-H, Chen C-L, Huang Y-Z, Chen H-C, Chen C-Y, Wu C-Y, et al. Augmented efficacy of intermittent theta burst stimulation on the virtual reality-based cycling training for upper limb function in patients with stroke: a double-blinded, randomized controlled trial. Journal of NeuroEngineering and Rehabilitation 2021;18. https://doi.org/10.1186/s12984-021-00885-5.

21. Fan W, Kuang X, Hu J, Chen X, Yi W, Lu L, et al. Acupuncture therapy for poststroke spastic hemiplegia: A systematic review and meta-analysis of randomized controlled trials. Complementary Therapies in Clinical Practice 2020;40. https://doi.org/10.1016/j.ctcp.2020.101176.

22. Francisco GE, Balbert A, Bavikatte G, Bensmaïl D, Carda S, Deltombe T, et al. A practical guide to optimizing the benefits of post-stroke spasticity interventions with botulinum toxin A: An international group consensus. Journal of Rehabilitation Medicine 2021;53. https://doi.org/10.2340/16501977-2753.

23. Haghshenas-Jaryani M, Patterson RM, Bugnariu N, Wijesundara MBJ. A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation. Journal of Hand Therapy 2020;33:198–208. https://doi.org/10.1016/j.jht.2020.03.024.

24. Johnston TE, Keller S, Denzer-Weiler C, Brown L. A clinical practice guideline for the use of ankle-foot Orthoses and functional electrical stimulation post-stroke. Journal of Neurologic Physical Therapy 2021;45:112–96. https://doi.org/10.1097/NPT.0000000000000347.

25. Kernan WN, Viera AJ, Billinger SA, Bravata DM, Stark SL, Kasner SE, et al. Primary Care of Adult Patients after Stroke: A Scientific Statement from the American Heart Association/American Stroke Association. Stroke 2021;52:E558–71. https://doi.org/10.1161/STR.0000000000000382.

26. Kesikburun S. Non-invasive brain stimulation in rehabilitation. Turkish Journal of Physical Medicine and Rehabilitation 2022;68:1–8. https://doi.org/10.5606/tftrd.2022.10608.

27. Kim J-Y, Park G, Lee S-A, Nam Y. Analysis of machine learning-based assessment for elbow spasticity using inertial sensors. Sensors 2020;20. https://doi.org/10.3390/s20061622.

28. Leclerc AM, Riker RR, Brown CS, May T, Nocella K, Cote J, et al. Amantadine and Modafinil as Neurostimulants Following Acute Stroke: A Retrospective Study of Intensive Care Unit Patients. Neurocritical Care 2021;34:102–11. https://doi.org/10.1007/s12028-020-00986-4.

29. Li S, Francisco GE, Rymer WZ. A New Definition of Poststroke Spasticity and the Interference of Spasticity With Motor Recovery From Acute to Chronic Stages. Neurorehabilitation and Neural Repair 2021;35:601–10. https://doi.org/10.1177/15459683211011214.

30. Lindsay C, Ispoglou S, Helliwell B, Hicklin D, Sturman S, Pandyan A. Can the early use of botulinum toxin in post stroke spasticity reduce contracture development? A randomised controlled trial. Clinical Rehabilitation 2021;35:399–409. https://doi.org/10.1177/0269215520963855.

31. Maura RM, Rueda-Parra S, Stevens RE, Weeks DL, Wolbrecht ET, Perry JC. Literature review of stroke assessment for upper-extremity physical function via EEG, EMG, kinematic, and kinetic measurements and their reliability. Journal of NeuroEngineering and Rehabilitation 2023;20. https://doi.org/10.1186/s12984-023-01142-7.

32. Maynard G, Kannan R, Liu J, Wang W, Lam TKT, Wang X, et al. Soluble Nogo-Receptor-Fc decoy (AXER-204) in patients with chronic cervical spinal cord injury in the USA: a first-in-human and randomised clinical trial. The Lancet Neurology 2023;22:672–84. https://doi.org/10.1016/S1474-4422(23)00215-6.

33. Moggio L, de Sire A, Marotta N, Demeco A, Ammendolia A. Vibration therapy role in neurological diseases rehabilitation: an umbrella review of systematic reviews. Disability and Rehabilitation 2022;44:5741–9. https://doi.org/10.1080/09638288.2021.1946175.

34. Moreno-SanJuan V, Cisnal A, Fraile-Marinero J-C, Pérez-Turiel J, De-La-Fuente E. Design and characterization of a lightweight underactuated RACA hand exoskeleton for neurorehabilitation. Robotics and Autonomous Systems 2021;143. https://doi.org/10.1016/j.robot.2021.103828.

35. Moulaei K, Bahaadinbeigy K, Haghdoost AA, Nezhad MS, Sheikhtaheri A. Overview of the role of robots in upper limb disabilities rehabilitation: a scoping review. Archives of Public Health 2023;81. https://doi.org/10.1186/s13690-023-01100-8.

36. Nam C, Rong W, Li W, Cheung C, Ngai W, Cheung T, et al. An Exoneuromusculoskeleton for Self-Help Upper Limb Rehabilitation after Stroke. Soft Robotics 2022;9:14–35. https://doi.org/10.1089/soro.2020.0090.

37. Nightingale R, Carlin F, Meghji J, McMullen K, Evans D, Van Der Zalm MM, et al. Post-TB health and wellbeing. International Journal of Tuberculosis and Lung Disease 2023;27:248–83. https://doi.org/10.5588/ijtld.22.0514.

38. Prosperini L, Tomassini V, Castelli L, Tacchino A, Brichetto G, Cattaneo D, et al. Exergames for balance dysfunction in neurological disability: a meta-analysis with meta-regression. Journal of Neurology 2021;268:3223–37. https://doi.org/10.1007/s00415-020-09918-w.

39. Qin S, Zhang Z, Zhao Y, Liu J, Qiu J, Gong Y, et al. The impact of acupuncture on neuroplasticity after ischemic stroke: a literature review and perspectives. Frontiers in Cellular Neuroscience 2022;16. https://doi.org/10.3389/fncel.2022.817732.

40. Romero-Laiseca MA, Delisle-Rodríguez D, Cardoso V, Gurve D, Loterio F, Posses Nascimento JH, et al. A Low-Cost Lower-Limb Brain-Machine Interface Triggered by Pedaling Motor Imagery for Post-Stroke Patients Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2020;28:988–96. https://doi.org/10.1109/TNSRE.2020.2974056.

41. Rubin DB, Ajiboye AB, Barefoot L, Bowker M, Cash SS, Chen D, et al. Interim Safety Profile from the Feasibility Study of the BrainGate Neural Interface System. Neurology 2023;100:E1177–92. https://doi.org/10.1212/WNL.0000000000201707.

42. Sebastián-Romagosa M, Cho W, Ortner R, Murovec N, von Oertzen T, Kamada K, et al. Brain Computer Interface Treatment for Motor Rehabilitation of Upper Extremity of Stroke Patients—A Feasibility Study. Frontiers in Neuroscience 2020;14. https://doi.org/10.3389/fnins.2020.591435.

43. Sebastián-Romagosa M, Udina E, Ortner R, Dinarès-Ferran J, Cho W, Murovec N, et al. EEG Biomarkers Related With the Functional State of Stroke Patients. Frontiers in Neuroscience 2020;14. https://doi.org/10.3389/fnins.2020.00582.

44. Shahid J, Kashif A, Shahid MK. A Comprehensive Review of Physical Therapy Interventions for Stroke Rehabilitation: Impairment-Based Approaches and Functional Goals. Brain Sciences 2023;13. https://doi.org/10.3390/brainsci13050717.

45. Shahmoradi L, Almasi S, Ahmadi H, Bashiri A, Azadi T, Mirbagherie A, et al. Virtual reality games for rehabilitation of upper extremities in stroke patients. Journal of Bodywork and Movement Therapies 2021;26:113–22. https://doi.org/10.1016/j.jbmt.2020.10.006.

46. Shi XQ, Heung HL, Tang ZQ, Li Z, Tong KY. Effects of a Soft Robotic Hand for Hand Rehabilitation in Chronic Stroke Survivors. Journal of Stroke and Cerebrovascular Diseases 2021;30. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105812.

47. Soleimani M, Ghazisaeidi M, Heydari S. The efficacy of virtual reality for upper limb rehabilitation in stroke patients: a systematic review and meta-analysis. BMC Medical Informatics and Decision Making 2024;24. https://doi.org/10.1186/s12911-024-02534-y.

48. Taravati S, Çapaci K, Üzümcügil H, Tanıgör G. Evaluation of an upper limb robotic rehabilitation program on motor functions, quality of life, cognition, and emotional status in patients with stroke: a randomized controlled study. Neurological Sciences 2022;43:1177–88. https://doi.org/10.1007/s10072-021-05431-8.

49. Teasell R, Salbach NM, Foley N, Mountain A, Cameron JI, Jong AD, et al. Canadian Stroke Best Practice Recommendations: Rehabilitation, Recovery, and Community Participation following Stroke. Part One: Rehabilitation and Recovery Following Stroke; 6th Edition Update 2019. International Journal of Stroke 2020;15:763–88. https://doi.org/10.1177/1747493019897843.

50. Veldema J, Jansen P. Resistance training in stroke rehabilitation: systematic review and meta-analysis. Clinical Rehabilitation 2020;34:1173–97. https://doi.org/10.1177/0269215520932964.

51. Voinescu A, Sui J, Stanton Fraser D. Virtual reality in neurorehabilitation: An umbrella review of meta-analyses. Journal of Clinical Medicine 2021;10. https://doi.org/10.3390/jcm10071478.

52. Yang E, Lew HL, Ö̂zçakar L, Wu C-H. Recent advances in the treatment of spasticity: Extracorporeal shock wave therapy. Journal of Clinical Medicine 2021;10. https://doi.org/10.3390/jcm10204723.

53. Zhang T, Zhao J, Li X, Bai Y, Wang B, Qu Y, et al. Chinese Stroke Association guidelines for clinical management of cerebrovascular disorders: executive summary and 2019 update of clinical management of stroke rehabilitation. Stroke and Vascular Neurology 2020;5:250–9. https://doi.org/10.1136/svn-2019-000321.

54. Bornheim S, Croisier J-L, Maquet P, Kaux J-F. Transcranial direct current stimulation associated with physical-therapy in acute stroke patients - A randomized, triple blind, sham-controlled study. Brain Stimulation 2020;13:329–36. https://doi.org/10.1016/j.brs.2019.10.019.

55. Dymarek R, Ptaszkowski K, Ptaszkowska L, Kowal M, Sopel M, Taradaj J, et al. Shockwaves as a treatment modality for spasticity reduction and recovery improvement in post-stroke adults – current evidence and qualitative systematic review. Clinical Interventions in Aging 2020;15:9–28. https://doi.org/10.2147/CIA.S221032.

56. Germanotta M, Gower V, Papadopoulou D, Cruciani A, Pecchioli C, Mosca R, et al. Reliability, validity and discriminant ability of a robotic device for finger training in patients with subacute stroke. Journal of NeuroEngineering and Rehabilitation 2020;17. https://doi.org/10.1186/s12984-019-0634-5.

57. Halakoo S, Ehsani F, Hosnian M, Zoghi M, Jaberzadeh S. The comparative effects of unilateral and bilateral transcranial direct current stimulation on motor learning and motor performance: A systematic review of literature and meta-analysis. Journal of Clinical Neuroscience 2020;72:8–14. https://doi.org/10.1016/j.jocn.2019.12.022.

58. Heung HL, Tang ZQ, Shi XQ, Tong KY, Li Z. Soft Rehabilitation Actuator With Integrated Post-stroke Finger Spasticity Evaluation. Frontiers in Bioengineering and Biotechnology 2020;8. https://doi.org/10.3389/fbioe.2020.00111.

59. Iglesias AH. Transcranial Magnetic Stimulation as Treatment in Multiple Neurologic Conditions. Current Neurology and Neuroscience Reports 2020;20. https://doi.org/10.1007/s11910-020-1021-0.

60. Lefaucheur J-P, Aleman A, Baeken C, Benninger DH, Brunelin J, DI Lazzaro V, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clinical Neurophysiology 2020;131:474–528. https://doi.org/10.1016/j.clinph.2019.11.002.

61. Rech KD, Salazar AP, Marchese RR, Schifino G, Cimolin V, Pagnussat AS. Fugl-Meyer Assessment Scores Are Related With Kinematic Measures in People with Chronic Hemiparesis after Stroke. Journal of Stroke and Cerebrovascular Diseases 2020;29. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104463.

62. Straudi S, Baroni A, Mele S, Craighero L, Manfredini F, Lamberti N, et al. Effects of a Robot-Assisted Arm Training Plus Hand Functional Electrical Stimulation on Recovery After Stroke: A Randomized Clinical Trial. Archives of Physical Medicine and Rehabilitation 2020;101:309–16. https://doi.org/10.1016/j.apmr.2019.09.016.

63. Zheng Y, Liu G, Yu L, Wang Y, Fang Y, Shen Y, et al. Effects of a 3D-printed orthosis compared to a low-temperature thermoplastic plate orthosis on wrist flexor spasticity in chronic hemiparetic stroke patients: a randomized controlled trial. Clinical Rehabilitation 2020;34:194–204. https://doi.org/10.1177/0269215519885174.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Agustín Musuruana, Martin Ricardo Revelant (Author)